Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Pharm ; 631: 122520, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36581105

RESUMO

Atorvastatin is a potent lipid-lowering drug with poor solubility and high presystemic clearance that limits its therapeutic efficacy. The aim of this study was to develop solid dispersions and micellar systems to obtain fast-dissolving atorvastatin systems that enhances their anti-hyperlipidemic effect. Solubility and wettability studies allow the development of solid dispersions with low proportions of croscarmellose sodium as hydrophilic carrier. Solid state characterization studies indicated that the addition of Kolliphor® RH40 surfactant to solid dispersions increases intermolecular hydrogen bonding between drug and polymer chains. Dissolution studies in biorelevant Fasted State Simulate Intestinal Fluid (FaSSIF pH 6.5) medium showed for atorvastatin solid dispersion a supersaturation peak of atorvastatin followed by an aggregation/precipitation process. Only the presence of a surfactant such as Kolliphor® RH40 in atorvastatin micellar system, promotes the presence of micelles that achieve delayed recrystallization. Efficacy studies were carried out using a hyperlipidemic model of rats fed with a high- fat diet. The atorvastatin micellar system at doses of 10 mg/kg, revealed a significant improvement in serum levels of total cholesterol, low-density lipoproteins, and triglycerides compared to atorvastatin raw material. This micellar system also exhibited more beneficial effects on liver steatosis, inflammation and ballooning injury.


Assuntos
Polímeros , Tensoativos , Ratos , Animais , Atorvastatina , Solubilidade , Triglicerídeos
2.
Pharmaceutics ; 14(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35890399

RESUMO

The aim of this research is the development of new colonic release systems of meloxicam (MLX) a non-steroidal anti-inflammatory drug (NSAIDs) with pH and time-dependent vehicles for cancer or autoimmune diseases. The colon has a higher pH than the rest of the gastrointestinal tract (GIT) and this can be used as a modified release strategy. Eudragit® polymers are the most widely used synthetic products in the design of colonic release formulations because they might offer mucoadhesiveness and pH-dependent release. Colonic delivery systems produced with pH-dependent and permeable polymers (FS-30D) or with pH-independent and low permeability polymers (NM-30D), must dissolve at a pH range of 6.0-7.0 to delay the release of the drug and prevent degradation in the GIT, before reaching the colon. The conditions prepared to simulate a gastrointestinal transit showed the CNM multiparticulate system, composed of Eudragit® NM and cellulose, as the best release option for MLX with a more sustained release with respect to the other formulations. CNM formulation followed Higuchi and First-order release kinetics, thus MLX release was controlled by a combination of diffusion and polymers swelling/eroding processes.

3.
Rev. colomb. ciencias quim. farm ; 48(3): 528-546, sep.-dic. 2019. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1138769

RESUMO

SUMMARY The solubilities of celecoxib (CLX), a COX-2 selective nonsteroidal anti-inflammatory drug, were determined in water-ethanol and ethanol-ethyl acetate mixtures at several temperatures (288.15-308.15 K). The solubility curves as a function of ethanol ratio were studied at five temperatures, they showed a single maximum located at 50% ethanol-ethyl acetate (δ1 = 22.50 MPa1/2). The measurements of the variation of inherent drug solubility with temperature were used to estimate different thermodynamic parameters, enthalpy, entropy and Gibbs free energy of solution (ΔH S , ΔS S and ΔG S hm , respectively). The apparent enthalpies of the solution were a nonlinear function of the ethanol ratio in aqueous mixture. Non-linear enthalpy-entropy compensation analysis was observed indicating different dissolution mechanism with the variation in mixtures composition. The solubility enhancement is entropy driven at water-rich region (0-40% v/v ethanol) and enthalpy controlled at ethanol-rich region (40-100% v/v ethanol), likely due to water-structure loss around nonpolar moieties of the drug and for the ethanol-rich mixtures it is the enthalpy, probably due to the drug better solvation.


RESUMEN Se determinó la solubilidad del celecoxib (CLX), un fármaco antiinflamatorio no esteroide selectivo de COX-2, en agua-etanol y etanol-acetato de etilo a varias temperaturas (288,15-308,15 K). Los perfiles de solubilidad obtenidos fueron estudiados en función de la proporción de etanol en las cinco temperaturas de estudio. Los resultados muestran solamente un máximo en el 50% de etanol-acetato de etilo (δ1 = 22,50 MPa1/2). La variación de la solubilidad con la temperatura se utilizó para calcular diferentes parámetros termodinámicos, entalpia, entropía y energía de disolución libre de Gibbs (ΔH3, ΔS S y ΔGS hm, respectivamente). Las entalpias aparentes de disolución fueron no lineales en la mezcla acuosa. Además, se observó un análisis de compensación de entalpía-entropía no lineal, lo que indica un mecanismo de disolución que varía con la composición de cada mezcla. El aumento de la solubilidad es impulsado por la entropía en la región rica en agua (0-40% v/v de etanol) y la entalpía en la región rica en etanol (40-100% v/v de etanol), probablemente debido a la pérdida de la estructura del agua alrededor de los residuos no polares del fármaco y para las mezclas ricas en etanol es la entalpía, probablemente debido a la mejor solvatación del fármaco.

4.
Int J Pharm ; 384(1-2): 93-9, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19819314

RESUMO

Co-solvents and solid dispersions with polyvinyl pyrrolidone were tested to increase solubility of thiabendazole. Solid dispersions were prepared by the solvent method and analyzed by differential scanning calorimetry. The solubility was measured at 15-35 degrees C in aqueous (ethanol-water) and non-aqueous (ethanol-ethyl acetate) mixtures. Combination of solid dispersions with cosolvents increased the water solubility of thiabendazole in a larger extent that each method separately. The effect of the solid dispersions is greatest in water and it decreases nonlinearly as the volume fraction of ethanol-in water increases. The solubility enhancement is smaller in ethanol-ethyl acetate and is uncorrelated with co-solvent concentration. Solubility parameters delta were used to predict drug/carrier compatibility and related to solubility profiles. Thiabendazole shows an intermediate behaviour between solubility curves with two peaks (more polar drugs with larger delta values) and a single peak (less polar drugs with lower delta values). The solid dispersions increase the solubility parameter of thiabendazole from delta=24 to delta=25.7 MPa(1/2). The model of Bustamante et al. allowed solubility prediction including jointly both mixtures whereas the equation of Jouyban et al. was able to predict the solubility at several temperatures in each binary mixture separately, using a few experiments.


Assuntos
Química Farmacêutica/métodos , Solventes/química , Tiabendazol/química , Sinergismo Farmacológico , Solubilidade , Temperatura
5.
J Pharm Biomed Anal ; 36(3): 571-8, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15522532

RESUMO

The solubilities of benzocaine and salicylic acid were determined in water-dioxane mixtures at several temperatures (5-40 degrees C for benzocaine and 10-40 degrees C for salicylic acid). The solubility curves as a function of dioxane ratio showed a maximum at 90% dioxane at all temperatures. Above 25 degrees C, the homogeneous mixture splits into two liquid immiscible phases. For benzocaine, the initial dioxane concentration range at which phase separation takes place increased with temperature (50-60% at 25 degrees C, 50-70% at 30-35 degrees C and 40-70% at 40 degrees C). For salicylic acid, the dioxane concentration required for phase separation (40-60% dioxane) did not change with temperature. Phase separation was not related to solid phase changes (polymorphism or solvates). The phase composition and drug extraction at the drug-rich phase were determined. The apparent enthalpies of the solution process were a nonlinear function of the dioxane ratio for both drugs. The apparent enthalpy of solution of benzocaine was larger than that expected at the upper limit of phase separation (70% dioxane), whereas for salicylic acid the apparent enthalpy of solution decreased abruptly at the region corresponding to phase separation (40-70% dioxane). Both drugs showed a nonlinear pattern of enthalpy-entropy compensation.


Assuntos
Benzocaína/análise , Dioxanos/análise , Ácido Salicílico/análise , Temperatura , Benzocaína/química , Dioxanos/química , Entropia , Soluções Farmacêuticas/análise , Soluções Farmacêuticas/química , Ácido Salicílico/química , Solubilidade , Água/análise , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...